MakeItFrom.com
Menu (ESC)

ASTM A229 Spring Steel vs. C84400 Valve Metal

ASTM A229 spring steel belongs to the iron alloys classification, while C84400 valve metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A229 spring steel and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 14
19
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
39
Tensile Strength: Ultimate (UTS), MPa 1690 to 1890
230
Tensile Strength: Yield (Proof), MPa 1100 to 1230
110

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1410
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 50
72
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 19
46
Embodied Water, L/kg 46
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 230
36
Resilience: Unit (Modulus of Resilience), kJ/m3 3260 to 4080
58
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 60 to 67
7.2
Strength to Weight: Bending, points 40 to 43
9.4
Thermal Diffusivity, mm2/s 14
22
Thermal Shock Resistance, points 54 to 60
8.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.55 to 0.85
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 97.5 to 99
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0.3 to 1.2
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0.15 to 0.35
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7