MakeItFrom.com
Menu (ESC)

ASTM A231 Spring Steel vs. C18400 Copper

ASTM A231 spring steel belongs to the iron alloys classification, while C18400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A231 spring steel and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 14
13 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 1080
190 to 310
Tensile Strength: Ultimate (UTS), MPa 1790
270 to 490
Tensile Strength: Yield (Proof), MPa 1570
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 420
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 52
320
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
80
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
81

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 28
41
Embodied Water, L/kg 51
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
63 to 120
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 64
8.5 to 15
Strength to Weight: Bending, points 42
10 to 16
Thermal Diffusivity, mm2/s 14
94
Thermal Shock Resistance, points 53
9.6 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Carbon (C), % 0.48 to 0.53
0
Chromium (Cr), % 0.8 to 1.1
0.4 to 1.2
Copper (Cu), % 0
97.2 to 99.6
Iron (Fe), % 96.7 to 97.7
0 to 0.15
Lithium (Li), % 0
0 to 0.050
Manganese (Mn), % 0.7 to 0.9
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0.15 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.040
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.5