MakeItFrom.com
Menu (ESC)

ASTM A231 Spring Steel vs. C18600 Copper

ASTM A231 spring steel belongs to the iron alloys classification, while C18600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A231 spring steel and the bottom bar is C18600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 14
8.0 to 11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 1080
310 to 340
Tensile Strength: Ultimate (UTS), MPa 1790
520 to 580
Tensile Strength: Yield (Proof), MPa 1570
500 to 520

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 420
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1410
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 52
280
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
70
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
71

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.0
2.9
Embodied Energy, MJ/kg 28
46
Embodied Water, L/kg 51
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
44 to 58
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 64
16 to 18
Strength to Weight: Bending, points 42
16 to 17
Thermal Diffusivity, mm2/s 14
81
Thermal Shock Resistance, points 53
19 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.48 to 0.53
0
Chromium (Cr), % 0.8 to 1.1
0.1 to 1.0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0
96.5 to 99.55
Iron (Fe), % 96.7 to 97.7
0.25 to 0.8
Manganese (Mn), % 0.7 to 0.9
0
Nickel (Ni), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0.050 to 0.5
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0
0.050 to 0.4
Residuals, % 0
0 to 0.5