MakeItFrom.com
Menu (ESC)

ASTM A231 Spring Steel vs. C19700 Copper

ASTM A231 spring steel belongs to the iron alloys classification, while C19700 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A231 spring steel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 14
2.4 to 13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 1080
240 to 300
Tensile Strength: Ultimate (UTS), MPa 1790
400 to 530
Tensile Strength: Yield (Proof), MPa 1570
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 420
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 52
250
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 28
41
Embodied Water, L/kg 51
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
12 to 49
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 64
12 to 16
Strength to Weight: Bending, points 42
14 to 16
Thermal Diffusivity, mm2/s 14
73
Thermal Shock Resistance, points 53
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.48 to 0.53
0
Chromium (Cr), % 0.8 to 1.1
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
97.4 to 99.59
Iron (Fe), % 96.7 to 97.7
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0.7 to 0.9
0 to 0.050
Nickel (Ni), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.040
0.1 to 0.4
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2