MakeItFrom.com
Menu (ESC)

ASTM A231 Spring Steel vs. C42200 Brass

ASTM A231 spring steel belongs to the iron alloys classification, while C42200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A231 spring steel and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 14
2.0 to 46
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 1080
210 to 350
Tensile Strength: Ultimate (UTS), MPa 1790
300 to 610
Tensile Strength: Yield (Proof), MPa 1570
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1410
1020
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 52
130
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
31
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
32

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
29
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
44
Embodied Water, L/kg 51
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
12 to 110
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 64
9.5 to 19
Strength to Weight: Bending, points 42
11 to 18
Thermal Diffusivity, mm2/s 14
39
Thermal Shock Resistance, points 53
10 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.48 to 0.53
0
Chromium (Cr), % 0.8 to 1.1
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 96.7 to 97.7
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.7 to 0.9
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.8 to 1.4
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5