MakeItFrom.com
Menu (ESC)

ASTM A231 Spring Steel vs. C72900 Copper-nickel

ASTM A231 spring steel belongs to the iron alloys classification, while C72900 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A231 spring steel and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 14
6.0 to 20
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
45
Shear Strength, MPa 1080
540 to 630
Tensile Strength: Ultimate (UTS), MPa 1790
870 to 1080
Tensile Strength: Yield (Proof), MPa 1570
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 420
210
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1410
950
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 52
29
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
39
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.0
4.6
Embodied Energy, MJ/kg 28
72
Embodied Water, L/kg 51
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
49 to 210
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 64
27 to 34
Strength to Weight: Bending, points 42
23 to 27
Thermal Diffusivity, mm2/s 14
8.6
Thermal Shock Resistance, points 53
31 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.48 to 0.53
0
Chromium (Cr), % 0.8 to 1.1
0
Copper (Cu), % 0
74.1 to 78
Iron (Fe), % 96.7 to 97.7
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.7 to 0.9
0 to 0.3
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
7.5 to 8.5
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3