MakeItFrom.com
Menu (ESC)

ASTM A231 Spring Steel vs. C84800 Brass

ASTM A231 spring steel belongs to the iron alloys classification, while C84800 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A231 spring steel and the bottom bar is C84800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 14
18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 1790
230
Tensile Strength: Yield (Proof), MPa 1570
100

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 420
150
Melting Completion (Liquidus), °C 1460
950
Melting Onset (Solidus), °C 1410
830
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 52
72
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
17

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
27
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 28
46
Embodied Water, L/kg 51
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
34
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 64
7.3
Strength to Weight: Bending, points 42
9.6
Thermal Diffusivity, mm2/s 14
23
Thermal Shock Resistance, points 53
8.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.48 to 0.53
0
Chromium (Cr), % 0.8 to 1.1
0
Copper (Cu), % 0
75 to 77
Iron (Fe), % 96.7 to 97.7
0 to 0.4
Lead (Pb), % 0
5.5 to 7.0
Manganese (Mn), % 0.7 to 0.9
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0.15 to 0.35
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.080
Tin (Sn), % 0
2.0 to 3.0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
13 to 17
Residuals, % 0
0 to 0.7