MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP5 vs. AWS E80C-Ni1

Both ASTM A369 grade FP5 and AWS E80C-Ni1 are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP5 and the bottom bar is AWS E80C-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
27
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
72
Tensile Strength: Ultimate (UTS), MPa 470
620
Tensile Strength: Yield (Proof), MPa 240
540

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.6
Embodied Energy, MJ/kg 23
21
Embodied Water, L/kg 69
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
160
Resilience: Unit (Modulus of Resilience), kJ/m3 140
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 13
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0 to 0.12
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 92.1 to 95.3
95.1 to 99.2
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.45 to 0.65
0 to 0.3
Nickel (Ni), % 0
0.8 to 1.1
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.9
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5