MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP5 vs. C72900 Copper-nickel

ASTM A369 grade FP5 belongs to the iron alloys classification, while C72900 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP5 and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
6.0 to 20
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
45
Shear Strength, MPa 300
540 to 630
Tensile Strength: Ultimate (UTS), MPa 470
870 to 1080
Tensile Strength: Yield (Proof), MPa 240
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 510
210
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1420
950
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
29
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
39
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.7
4.6
Embodied Energy, MJ/kg 23
72
Embodied Water, L/kg 69
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 140
2030 to 3490
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 17
27 to 34
Strength to Weight: Bending, points 17
23 to 27
Thermal Diffusivity, mm2/s 11
8.6
Thermal Shock Resistance, points 13
31 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
74.1 to 78
Iron (Fe), % 92.1 to 95.3
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.3 to 0.6
0 to 0.3
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3