MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP9 vs. C40500 Penny Bronze

ASTM A369 grade FP9 belongs to the iron alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP9 and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
3.0 to 49
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Shear Strength, MPa 300
210 to 310
Tensile Strength: Ultimate (UTS), MPa 470
270 to 540
Tensile Strength: Yield (Proof), MPa 240
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 600
190
Melting Completion (Liquidus), °C 1450
1060
Melting Onset (Solidus), °C 1410
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 26
160
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
41
Electrical Conductivity: Equal Weight (Specific), % IACS 10
42

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
30
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
43
Embodied Water, L/kg 87
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
28 to 1200
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
8.5 to 17
Strength to Weight: Bending, points 17
10 to 17
Thermal Diffusivity, mm2/s 6.9
48
Thermal Shock Resistance, points 13
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0
94 to 96
Iron (Fe), % 87.1 to 90.3
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.5 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0
0 to 0.5