MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. C23000 Brass

ASTM A369 grade FP91 belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19
2.9 to 47
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
42
Shear Strength, MPa 410
220 to 340
Tensile Strength: Ultimate (UTS), MPa 670
280 to 590
Tensile Strength: Yield (Proof), MPa 460
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1420
990
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 26
160
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
37
Electrical Conductivity: Equal Weight (Specific), % IACS 10
39

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 37
43
Embodied Water, L/kg 88
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 560
31 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
8.9 to 19
Strength to Weight: Bending, points 22
11 to 18
Thermal Diffusivity, mm2/s 6.9
48
Thermal Shock Resistance, points 18
9.4 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0
Chromium (Cr), % 8.0 to 9.5
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 87.3 to 90.3
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.2 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
13.7 to 16
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.2