MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. 5052 Aluminum

ASTM A369 grade FP92 belongs to the iron alloys classification, while 5052 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is 5052 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
46 to 83
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 19
1.1 to 22
Fatigue Strength, MPa 330
66 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
120 to 180
Tensile Strength: Ultimate (UTS), MPa 710
190 to 320
Tensile Strength: Yield (Proof), MPa 490
75 to 280

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 590
190
Melting Completion (Liquidus), °C 1490
650
Melting Onset (Solidus), °C 1450
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 26
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
35
Electrical Conductivity: Equal Weight (Specific), % IACS 10
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.6
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 89
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
1.7 to 69
Resilience: Unit (Modulus of Resilience), kJ/m3 620
41 to 590
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 25
19 to 33
Strength to Weight: Bending, points 22
27 to 38
Thermal Diffusivity, mm2/s 6.9
57
Thermal Shock Resistance, points 19
8.3 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.020
95.8 to 97.7
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0.15 to 0.35
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 85.8 to 89.1
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0.3 to 0.6
0 to 0.1
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.15