MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. 710.0 Aluminum

ASTM A369 grade FP92 belongs to the iron alloys classification, while 710.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is 710.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
75
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 19
2.2 to 3.6
Fatigue Strength, MPa 330
55 to 110
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
180
Tensile Strength: Ultimate (UTS), MPa 710
240 to 250
Tensile Strength: Yield (Proof), MPa 490
160

Thermal Properties

Latent Heat of Fusion, J/g 260
380
Maximum Temperature: Mechanical, °C 590
170
Melting Completion (Liquidus), °C 1490
650
Melting Onset (Solidus), °C 1450
610
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 26
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
35
Electrical Conductivity: Equal Weight (Specific), % IACS 10
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 89
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
4.9 to 7.9
Resilience: Unit (Modulus of Resilience), kJ/m3 620
180 to 190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 25
23
Strength to Weight: Bending, points 22
29
Thermal Diffusivity, mm2/s 6.9
53
Thermal Shock Resistance, points 19
10 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.020
90.5 to 93.1
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
0.35 to 0.65
Iron (Fe), % 85.8 to 89.1
0 to 0.5
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0.3 to 0.6
0 to 0.050
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.25
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
6.0 to 7.0
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.15