MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. 8090 Aluminum

ASTM A369 grade FP92 belongs to the iron alloys classification, while 8090 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
67
Elongation at Break, % 19
3.5 to 13
Fatigue Strength, MPa 330
91 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Tensile Strength: Ultimate (UTS), MPa 710
340 to 490
Tensile Strength: Yield (Proof), MPa 490
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 590
190
Melting Completion (Liquidus), °C 1490
660
Melting Onset (Solidus), °C 1450
600
Specific Heat Capacity, J/kg-K 470
960
Thermal Conductivity, W/m-K 26
95 to 160
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
20
Electrical Conductivity: Equal Weight (Specific), % IACS 10
66

Otherwise Unclassified Properties

Base Metal Price, % relative 11
18
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.6
Embodied Energy, MJ/kg 40
170
Embodied Water, L/kg 89
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 620
340 to 1330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 25
34 to 49
Strength to Weight: Bending, points 22
39 to 50
Thermal Diffusivity, mm2/s 6.9
36 to 60
Thermal Shock Resistance, points 19
15 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.020
93 to 98.4
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0 to 0.1
Copper (Cu), % 0
1.0 to 1.6
Iron (Fe), % 85.8 to 89.1
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0
0.6 to 1.3
Manganese (Mn), % 0.3 to 0.6
0 to 0.1
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.1
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0 to 0.010
0.040 to 0.16
Residuals, % 0
0 to 0.15