MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. AISI 301 Stainless Steel

Both ASTM A369 grade FP92 and AISI 301 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
190 to 440
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
7.4 to 46
Fatigue Strength, MPa 330
210 to 600
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 440
410 to 860
Tensile Strength: Ultimate (UTS), MPa 710
590 to 1460
Tensile Strength: Yield (Proof), MPa 490
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 590
840
Melting Completion (Liquidus), °C 1490
1420
Melting Onset (Solidus), °C 1450
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
16
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
39
Embodied Water, L/kg 89
130

Common Calculations

PREN (Pitting Resistance) 14
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 620
130 to 2970
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
21 to 52
Strength to Weight: Bending, points 22
20 to 37
Thermal Diffusivity, mm2/s 6.9
4.2
Thermal Shock Resistance, points 19
12 to 31

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.15
Chromium (Cr), % 8.5 to 9.5
16 to 18
Iron (Fe), % 85.8 to 89.1
70.7 to 78
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
6.0 to 8.0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0