MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. AISI 410S Stainless Steel

Both ASTM A369 grade FP92 and AISI 410S stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is AISI 410S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
25
Fatigue Strength, MPa 330
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 440
310
Tensile Strength: Ultimate (UTS), MPa 710
480
Tensile Strength: Yield (Proof), MPa 490
250

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 590
740
Melting Completion (Liquidus), °C 1490
1440
Melting Onset (Solidus), °C 1450
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 40
27
Embodied Water, L/kg 89
100

Common Calculations

PREN (Pitting Resistance) 14
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 620
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 6.9
8.1
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.080
Chromium (Cr), % 8.5 to 9.5
11.5 to 13.5
Iron (Fe), % 85.8 to 89.1
83.8 to 88.5
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0 to 0.6
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0