MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. EN 1.4418 Stainless Steel

Both ASTM A369 grade FP92 and EN 1.4418 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is EN 1.4418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
16 to 20
Fatigue Strength, MPa 330
350 to 480
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 440
530 to 620
Tensile Strength: Ultimate (UTS), MPa 710
860 to 1000
Tensile Strength: Yield (Proof), MPa 490
540 to 790

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 590
870
Melting Completion (Liquidus), °C 1490
1450
Melting Onset (Solidus), °C 1450
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
39
Embodied Water, L/kg 89
130

Common Calculations

PREN (Pitting Resistance) 14
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 620
730 to 1590
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
31 to 36
Strength to Weight: Bending, points 22
26 to 28
Thermal Diffusivity, mm2/s 6.9
4.0
Thermal Shock Resistance, points 19
31 to 36

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.060
Chromium (Cr), % 8.5 to 9.5
15 to 17
Iron (Fe), % 85.8 to 89.1
73.2 to 80.2
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.3 to 0.6
0.8 to 1.5
Nickel (Ni), % 0 to 0.4
4.0 to 6.0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.020
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.7
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0