MakeItFrom.com
Menu (ESC)

ASTM A372 Grade J Steel vs. Grade C-6 Titanium

ASTM A372 grade J steel belongs to the iron alloys classification, while grade C-6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade J steel and the bottom bar is grade C-6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 310
290
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 17 to 22
9.0
Fatigue Strength, MPa 310 to 570
460
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 650 to 1020
890
Tensile Strength: Yield (Proof), MPa 430 to 850
830

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 420
310
Melting Completion (Liquidus), °C 1460
1580
Melting Onset (Solidus), °C 1420
1530
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 44
7.8
Thermal Expansion, µm/m-K 13
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.5
30
Embodied Energy, MJ/kg 20
480
Embodied Water, L/kg 51
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
78
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 1930
3300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 23 to 36
55
Strength to Weight: Bending, points 21 to 29
46
Thermal Diffusivity, mm2/s 12
3.2
Thermal Shock Resistance, points 19 to 30
63

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0.35 to 0.5
0 to 0.1
Chromium (Cr), % 0.8 to 1.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.7 to 97.8
0 to 0.5
Manganese (Mn), % 0.75 to 1.1
0
Molybdenum (Mo), % 0.15 to 0.25
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.7 to 94
Residuals, % 0
0 to 0.4