MakeItFrom.com
Menu (ESC)

ASTM A372 Grade J Steel vs. C85900 Brass

ASTM A372 grade J steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade J steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 310
85
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 17 to 22
30
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 650 to 1020
460
Tensile Strength: Yield (Proof), MPa 430 to 850
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 420
130
Melting Completion (Liquidus), °C 1460
830
Melting Onset (Solidus), °C 1420
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 44
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
28

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.5
2.9
Embodied Energy, MJ/kg 20
49
Embodied Water, L/kg 51
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
110
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 1930
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 23 to 36
16
Strength to Weight: Bending, points 21 to 29
17
Thermal Diffusivity, mm2/s 12
29
Thermal Shock Resistance, points 19 to 30
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0.35 to 0.5
0
Chromium (Cr), % 0.8 to 1.2
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 96.7 to 97.8
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.75 to 1.1
0 to 0.010
Molybdenum (Mo), % 0.15 to 0.25
0
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0 to 0.015
0 to 0.010
Silicon (Si), % 0.15 to 0.35
0 to 0.25
Sulfur (S), % 0 to 0.010
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7