MakeItFrom.com
Menu (ESC)

ASTM A372 Grade J Steel vs. C90300 Bronze

ASTM A372 grade J steel belongs to the iron alloys classification, while C90300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade J steel and the bottom bar is C90300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 22
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 650 to 1020
330
Tensile Strength: Yield (Proof), MPa 430 to 850
150

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 44
75
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
12

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
33
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.5
3.4
Embodied Energy, MJ/kg 20
56
Embodied Water, L/kg 51
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
59
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 1930
110
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23 to 36
11
Strength to Weight: Bending, points 21 to 29
12
Thermal Diffusivity, mm2/s 12
23
Thermal Shock Resistance, points 19 to 30
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.35 to 0.5
0
Chromium (Cr), % 0.8 to 1.2
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 96.7 to 97.8
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.75 to 1.1
0
Molybdenum (Mo), % 0.15 to 0.25
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.015
0 to 1.5
Silicon (Si), % 0.15 to 0.35
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
7.5 to 9.0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.6