MakeItFrom.com
Menu (ESC)

ASTM A372 Grade L Steel vs. Nickel 693

ASTM A372 grade L steel belongs to the iron alloys classification, while nickel 693 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade L steel and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 14
34
Fatigue Strength, MPa 670
230
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 700
440
Tensile Strength: Ultimate (UTS), MPa 1160
660
Tensile Strength: Yield (Proof), MPa 1040
310

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 430
1010
Melting Completion (Liquidus), °C 1460
1350
Melting Onset (Solidus), °C 1420
1310
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 44
9.1
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
60
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.7
9.9
Embodied Energy, MJ/kg 22
140
Embodied Water, L/kg 54
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
190
Resilience: Unit (Modulus of Resilience), kJ/m3 2890
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 41
23
Strength to Weight: Bending, points 31
21
Thermal Diffusivity, mm2/s 12
2.3
Thermal Shock Resistance, points 34
19

Alloy Composition

Aluminum (Al), % 0
2.5 to 4.0
Carbon (C), % 0.38 to 0.43
0 to 0.15
Chromium (Cr), % 0.7 to 0.9
27 to 31
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 95.2 to 96.3
2.5 to 6.0
Manganese (Mn), % 0.6 to 0.8
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
53.3 to 67.5
Niobium (Nb), % 0
0.5 to 2.5
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0
0 to 1.0