MakeItFrom.com
Menu (ESC)

ASTM A372 Grade L Steel vs. C64800 Bronze

ASTM A372 grade L steel belongs to the iron alloys classification, while C64800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade L steel and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 14
8.0
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 700
380
Tensile Strength: Ultimate (UTS), MPa 1160
640
Tensile Strength: Yield (Proof), MPa 1040
630

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 430
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 44
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
65
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
66

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.7
2.7
Embodied Energy, MJ/kg 22
43
Embodied Water, L/kg 54
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
51
Resilience: Unit (Modulus of Resilience), kJ/m3 2890
1680
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 41
20
Strength to Weight: Bending, points 31
19
Thermal Diffusivity, mm2/s 12
75
Thermal Shock Resistance, points 34
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.38 to 0.43
0
Chromium (Cr), % 0.7 to 0.9
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0
92.4 to 98.8
Iron (Fe), % 95.2 to 96.3
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.8
0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
0 to 0.5
Phosphorus (P), % 0 to 0.015
0 to 0.5
Silicon (Si), % 0.15 to 0.35
0.2 to 1.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5