MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 11 Steel vs. 7108A Aluminum

ASTM A387 grade 11 steel belongs to the iron alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 11 steel and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 25
11 to 13
Fatigue Strength, MPa 200 to 250
120 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 320 to 390
210
Tensile Strength: Ultimate (UTS), MPa 500 to 600
350
Tensile Strength: Yield (Proof), MPa 270 to 350
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 260
380
Maximum Temperature: Mechanical, °C 430
210
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
520
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 39
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
36
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 1.6
8.3
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 53
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 130
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 320
610 to 640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 18 to 21
33 to 34
Strength to Weight: Bending, points 18 to 20
38
Thermal Diffusivity, mm2/s 11
59
Thermal Shock Resistance, points 15 to 18
15 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.6 to 94.4
Carbon (C), % 0.050 to 0.17
0
Chromium (Cr), % 1.0 to 1.5
0 to 0.040
Copper (Cu), % 0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 96.2 to 97.6
0 to 0.3
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0.4 to 0.65
0 to 0.050
Molybdenum (Mo), % 0.45 to 0.65
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.5 to 0.8
0 to 0.2
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 0
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15