MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 11 Steel vs. Grade 28 Titanium

ASTM A387 grade 11 steel belongs to the iron alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 11 steel and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
11 to 17
Fatigue Strength, MPa 200 to 250
330 to 480
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Shear Strength, MPa 320 to 390
420 to 590
Tensile Strength: Ultimate (UTS), MPa 500 to 600
690 to 980
Tensile Strength: Yield (Proof), MPa 270 to 350
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 430
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 39
8.3
Thermal Expansion, µm/m-K 13
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.6
37
Embodied Energy, MJ/kg 21
600
Embodied Water, L/kg 53
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 130
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 320
1370 to 3100
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 18 to 21
43 to 61
Strength to Weight: Bending, points 18 to 20
39 to 49
Thermal Diffusivity, mm2/s 11
3.4
Thermal Shock Resistance, points 15 to 18
47 to 66

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.050 to 0.17
0 to 0.080
Chromium (Cr), % 1.0 to 1.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.2 to 97.6
0 to 0.25
Manganese (Mn), % 0.4 to 0.65
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.025
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0.5 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4

Comparable Variants