MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 11 Steel vs. Grade 4 Titanium

ASTM A387 grade 11 steel belongs to the iron alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 11 steel and the bottom bar is grade 4 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
17
Fatigue Strength, MPa 200 to 250
340
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Shear Strength, MPa 320 to 390
390
Tensile Strength: Ultimate (UTS), MPa 500 to 600
640
Tensile Strength: Yield (Proof), MPa 270 to 350
530

Thermal Properties

Latent Heat of Fusion, J/g 260
420
Maximum Temperature: Mechanical, °C 430
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 39
19
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.6
31
Embodied Energy, MJ/kg 21
500
Embodied Water, L/kg 53
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 320
1330
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 18 to 21
40
Strength to Weight: Bending, points 18 to 20
37
Thermal Diffusivity, mm2/s 11
7.6
Thermal Shock Resistance, points 15 to 18
46

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.050 to 0.17
0 to 0.080
Chromium (Cr), % 1.0 to 1.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.2 to 97.6
0 to 0.5
Manganese (Mn), % 0.4 to 0.65
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.5 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
98.6 to 100
Residuals, % 0
0 to 0.4