MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 11 Steel vs. SAE-AISI 8630 Steel

Both ASTM A387 grade 11 steel and SAE-AISI 8630 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 11 steel and the bottom bar is SAE-AISI 8630 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
160 to 200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
12 to 24
Fatigue Strength, MPa 200 to 250
260 to 350
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 320 to 390
340 to 410
Tensile Strength: Ultimate (UTS), MPa 500 to 600
540 to 680
Tensile Strength: Yield (Proof), MPa 270 to 350
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 430
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
39
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.5
Embodied Energy, MJ/kg 21
20
Embodied Water, L/kg 53
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 130
78 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 320
340 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18 to 21
19 to 24
Strength to Weight: Bending, points 18 to 20
19 to 22
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 15 to 18
18 to 23

Alloy Composition

Carbon (C), % 0.050 to 0.17
0.28 to 0.33
Chromium (Cr), % 1.0 to 1.5
0.4 to 0.6
Iron (Fe), % 96.2 to 97.6
96.8 to 97.9
Manganese (Mn), % 0.4 to 0.65
0.7 to 0.9
Molybdenum (Mo), % 0.45 to 0.65
0.15 to 0.25
Nickel (Ni), % 0
0.4 to 0.7
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0.5 to 0.8
0.15 to 0.35
Sulfur (S), % 0 to 0.025
0 to 0.040

Comparable Variants