MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 11 Steel vs. C81500 Copper

ASTM A387 grade 11 steel belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 11 steel and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
110
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 25
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 500 to 600
350
Tensile Strength: Yield (Proof), MPa 270 to 350
280

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 430
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
320
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
82
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
83

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.6
2.6
Embodied Energy, MJ/kg 21
41
Embodied Water, L/kg 53
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 130
56
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 320
330
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18 to 21
11
Strength to Weight: Bending, points 18 to 20
12
Thermal Diffusivity, mm2/s 11
91
Thermal Shock Resistance, points 15 to 18
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.050 to 0.17
0
Chromium (Cr), % 1.0 to 1.5
0.4 to 1.5
Copper (Cu), % 0
97.4 to 99.6
Iron (Fe), % 96.2 to 97.6
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.4 to 0.65
0
Molybdenum (Mo), % 0.45 to 0.65
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.5 to 0.8
0 to 0.15
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5