MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 12 Steel vs. Grade 13 Titanium

ASTM A387 grade 12 steel belongs to the iron alloys classification, while grade 13 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 12 steel and the bottom bar is grade 13 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
27
Fatigue Strength, MPa 190 to 230
140
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Shear Strength, MPa 300 to 330
200
Tensile Strength: Ultimate (UTS), MPa 470 to 520
310
Tensile Strength: Yield (Proof), MPa 260 to 310
190

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 430
320
Melting Completion (Liquidus), °C 1470
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 44
22
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.6
32
Embodied Energy, MJ/kg 21
520
Embodied Water, L/kg 51
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 110
73
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 250
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 16 to 18
19
Strength to Weight: Bending, points 17 to 18
22
Thermal Diffusivity, mm2/s 12
8.9
Thermal Shock Resistance, points 14 to 15
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.050 to 0.17
0 to 0.080
Chromium (Cr), % 0.8 to 1.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97 to 98.2
0 to 0.2
Manganese (Mn), % 0.4 to 0.65
0
Molybdenum (Mo), % 0.45 to 0.6
0
Nickel (Ni), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0.15 to 0.4
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
98.5 to 99.56
Residuals, % 0
0 to 0.4