MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 12 Steel vs. C11100 Copper

ASTM A387 grade 12 steel belongs to the iron alloys classification, while C11100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 12 steel and the bottom bar is C11100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 25
1.5
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 300 to 330
230
Tensile Strength: Ultimate (UTS), MPa 470 to 520
460
Tensile Strength: Yield (Proof), MPa 260 to 310
420

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 430
200
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1420
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 44
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
100

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.6
2.6
Embodied Energy, MJ/kg 21
41
Embodied Water, L/kg 51
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 110
6.6
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 250
750
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 16 to 18
14
Strength to Weight: Bending, points 17 to 18
15
Thermal Diffusivity, mm2/s 12
110
Thermal Shock Resistance, points 14 to 15
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.050 to 0.17
0
Chromium (Cr), % 0.8 to 1.2
0
Copper (Cu), % 0
99.9 to 100
Iron (Fe), % 97 to 98.2
0
Manganese (Mn), % 0.4 to 0.65
0
Molybdenum (Mo), % 0.45 to 0.6
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.4
0
Sulfur (S), % 0 to 0.025
0
Residuals, % 0
0 to 0.1