MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 2 Steel vs. EN 1.0473 Steel

Both ASTM A387 grade 2 steel and EN 1.0473 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 2 steel and the bottom bar is EN 1.0473 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 170
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
22
Fatigue Strength, MPa 190 to 250
250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 300 to 350
360
Tensile Strength: Ultimate (UTS), MPa 470 to 550
570
Tensile Strength: Yield (Proof), MPa 260 to 350
360

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 45
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
2.2
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.5
Embodied Energy, MJ/kg 20
20
Embodied Water, L/kg 50
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16 to 20
20
Strength to Weight: Bending, points 17 to 19
19
Thermal Diffusivity, mm2/s 12
14
Thermal Shock Resistance, points 14 to 16
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0.050 to 0.21
0.1 to 0.22
Chromium (Cr), % 0.5 to 0.8
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.1 to 98.3
96.3 to 98.8
Manganese (Mn), % 0.55 to 0.8
1.1 to 1.7
Molybdenum (Mo), % 0.45 to 0.6
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.040
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.15 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.020