MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 2 Steel vs. C94500 Bronze

ASTM A387 grade 2 steel belongs to the iron alloys classification, while C94500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 2 steel and the bottom bar is C94500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 170
50
Elastic (Young's, Tensile) Modulus, GPa 190
92
Elongation at Break, % 25
12
Poisson's Ratio 0.29
0.36
Shear Modulus, GPa 73
34
Tensile Strength: Ultimate (UTS), MPa 470 to 550
170
Tensile Strength: Yield (Proof), MPa 260 to 350
83

Thermal Properties

Latent Heat of Fusion, J/g 250
160
Maximum Temperature: Mechanical, °C 420
130
Melting Completion (Liquidus), °C 1470
940
Melting Onset (Solidus), °C 1420
800
Specific Heat Capacity, J/kg-K 470
330
Thermal Conductivity, W/m-K 45
52
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
30
Density, g/cm3 7.9
9.3
Embodied Carbon, kg CO2/kg material 1.6
3.2
Embodied Energy, MJ/kg 20
51
Embodied Water, L/kg 50
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
17
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
37
Stiffness to Weight: Axial, points 13
5.5
Stiffness to Weight: Bending, points 24
16
Strength to Weight: Axial, points 16 to 20
5.2
Strength to Weight: Bending, points 17 to 19
7.4
Thermal Diffusivity, mm2/s 12
17
Thermal Shock Resistance, points 14 to 16
6.7

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0.050 to 0.21
0
Chromium (Cr), % 0.5 to 0.8
0
Copper (Cu), % 0
66.7 to 78
Iron (Fe), % 97.1 to 98.3
0 to 0.15
Lead (Pb), % 0
16 to 22
Manganese (Mn), % 0.55 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.6
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0.15 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 1.2