MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21 Steel vs. C82700 Copper

ASTM A387 grade 21 steel belongs to the iron alloys classification, while C82700 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21 steel and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
1.8
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
46
Tensile Strength: Ultimate (UTS), MPa 500 to 590
1200
Tensile Strength: Yield (Proof), MPa 230 to 350
1020

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Maximum Temperature: Mechanical, °C 480
300
Melting Completion (Liquidus), °C 1470
950
Melting Onset (Solidus), °C 1430
860
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 41
130
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
20
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
21

Otherwise Unclassified Properties

Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.8
12
Embodied Energy, MJ/kg 23
180
Embodied Water, L/kg 62
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 110
21
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
4260
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18 to 21
38
Strength to Weight: Bending, points 18 to 20
29
Thermal Diffusivity, mm2/s 11
39
Thermal Shock Resistance, points 14 to 17
41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 2.8 to 3.3
0 to 0.090
Copper (Cu), % 0
94.6 to 96.7
Iron (Fe), % 94.4 to 96
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
1.0 to 1.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5