MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. EN 1.4877 Stainless Steel

Both ASTM A387 grade 22L class 1 and EN 1.4877 stainless steel are iron alloys. They have 42% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
36
Fatigue Strength, MPa 160
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
79
Shear Strength, MPa 310
420
Tensile Strength: Ultimate (UTS), MPa 500
630
Tensile Strength: Yield (Proof), MPa 230
200

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 460
1150
Melting Completion (Liquidus), °C 1470
1400
Melting Onset (Solidus), °C 1430
1360
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
37
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.7
6.2
Embodied Energy, MJ/kg 23
89
Embodied Water, L/kg 58
220

Common Calculations

PREN (Pitting Resistance) 5.6
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.025
Carbon (C), % 0 to 0.1
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 2.0 to 2.5
26 to 28
Iron (Fe), % 95.2 to 96.8
36.4 to 42.3
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.025
0 to 0.010