MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. CC752S Brass

ASTM A387 grade 22L class 1 belongs to the iron alloys classification, while CC752S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is CC752S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
100
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 20
8.4
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 500
350
Tensile Strength: Yield (Proof), MPa 230
190

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 460
130
Melting Completion (Liquidus), °C 1470
840
Melting Onset (Solidus), °C 1430
800
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
28

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
24
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.7
2.7
Embodied Energy, MJ/kg 23
46
Embodied Water, L/kg 58
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
25
Resilience: Unit (Modulus of Resilience), kJ/m3 140
180
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18
12
Strength to Weight: Bending, points 18
13
Thermal Diffusivity, mm2/s 11
35
Thermal Shock Resistance, points 14
12

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.7
Antimony (Sb), % 0
0 to 0.14
Arsenic (As), % 0
0.040 to 0.14
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0
61.5 to 64.5
Iron (Fe), % 95.2 to 96.8
0 to 0.3
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 0.3 to 0.6
0 to 0.1
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.020
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
31.5 to 36.7