MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. Grade 36 Titanium

ASTM A387 grade 22L class 1 belongs to the iron alloys classification, while grade 36 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is grade 36 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
11
Fatigue Strength, MPa 160
300
Poisson's Ratio 0.29
0.36
Shear Modulus, GPa 74
39
Shear Strength, MPa 310
320
Tensile Strength: Ultimate (UTS), MPa 500
530
Tensile Strength: Yield (Proof), MPa 230
520

Thermal Properties

Latent Heat of Fusion, J/g 260
370
Maximum Temperature: Mechanical, °C 460
320
Melting Completion (Liquidus), °C 1470
2020
Melting Onset (Solidus), °C 1430
1950
Specific Heat Capacity, J/kg-K 470
420
Thermal Expansion, µm/m-K 13
8.1

Otherwise Unclassified Properties

Density, g/cm3 7.9
6.3
Embodied Carbon, kg CO2/kg material 1.7
58
Embodied Energy, MJ/kg 23
920
Embodied Water, L/kg 58
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
59
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1260
Stiffness to Weight: Axial, points 13
9.3
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 18
23
Thermal Shock Resistance, points 14
45

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 2.0 to 2.5
0
Hydrogen (H), % 0
0 to 0.0035
Iron (Fe), % 95.2 to 96.8
0 to 0.030
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Niobium (Nb), % 0
42 to 47
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.16
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
52.3 to 58
Residuals, % 0
0 to 0.4