MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. C11000 Copper

ASTM A387 grade 22L class 1 belongs to the iron alloys classification, while C11000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is C11000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
1.5 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 310
150 to 230
Tensile Strength: Ultimate (UTS), MPa 500
220 to 410
Tensile Strength: Yield (Proof), MPa 230
69 to 390

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 460
200
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1430
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
31
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 1.7
2.6
Embodied Energy, MJ/kg 23
41
Embodied Water, L/kg 58
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
6.1 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 140
21 to 640
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18
6.8 to 13
Strength to Weight: Bending, points 18
9.0 to 14
Thermal Diffusivity, mm2/s 11
110
Thermal Shock Resistance, points 14
8.0 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0
99.9 to 100
Iron (Fe), % 95.2 to 96.8
0
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Residuals, % 0
0 to 0.1