MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. C43000 Brass

ASTM A387 grade 22L class 1 belongs to the iron alloys classification, while C43000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
3.0 to 55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
42
Shear Strength, MPa 310
230 to 410
Tensile Strength: Ultimate (UTS), MPa 500
320 to 710
Tensile Strength: Yield (Proof), MPa 230
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 460
170
Melting Completion (Liquidus), °C 1470
1030
Melting Onset (Solidus), °C 1430
1000
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
120
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
27
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
28

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.7
2.8
Embodied Energy, MJ/kg 23
46
Embodied Water, L/kg 58
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 140
82 to 1350
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18
10 to 23
Strength to Weight: Bending, points 18
12 to 20
Thermal Diffusivity, mm2/s 11
36
Thermal Shock Resistance, points 14
11 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0
84 to 87
Iron (Fe), % 95.2 to 96.8
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
1.7 to 2.7
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0
0 to 0.5