MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. C53800 Bronze

ASTM A387 grade 22L class 1 belongs to the iron alloys classification, while C53800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
2.3
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
40
Shear Strength, MPa 310
470
Tensile Strength: Ultimate (UTS), MPa 500
830
Tensile Strength: Yield (Proof), MPa 230
660

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 460
160
Melting Completion (Liquidus), °C 1470
980
Melting Onset (Solidus), °C 1430
800
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 40
61
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
37
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.7
3.9
Embodied Energy, MJ/kg 23
64
Embodied Water, L/kg 58
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
18
Resilience: Unit (Modulus of Resilience), kJ/m3 140
2020
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18
26
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 11
19
Thermal Shock Resistance, points 14
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0
85.1 to 86.5
Iron (Fe), % 95.2 to 96.8
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0.3 to 0.6
0 to 0.060
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
13.1 to 13.9
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2