MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. C83300 Brass

ASTM A387 grade 22L class 1 belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
35
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
35
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
42
Tensile Strength: Ultimate (UTS), MPa 500
220
Tensile Strength: Yield (Proof), MPa 230
69

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 460
180
Melting Completion (Liquidus), °C 1470
1060
Melting Onset (Solidus), °C 1430
1030
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
160
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
32
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
33

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
30
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.7
2.7
Embodied Energy, MJ/kg 23
44
Embodied Water, L/kg 58
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
60
Resilience: Unit (Modulus of Resilience), kJ/m3 140
21
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18
6.9
Strength to Weight: Bending, points 18
9.2
Thermal Diffusivity, mm2/s 11
48
Thermal Shock Resistance, points 14
7.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0
92 to 94
Iron (Fe), % 95.2 to 96.8
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
1.0 to 2.0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7