MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. EN 1.8888 Steel

Both ASTM A387 grade 9 steel and EN 1.8888 steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is EN 1.8888 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 21
16
Fatigue Strength, MPa 160 to 240
470
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 310 to 380
510
Tensile Strength: Ultimate (UTS), MPa 500 to 600
830
Tensile Strength: Yield (Proof), MPa 230 to 350
720

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 600
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 10
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
3.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.1
1.9
Embodied Energy, MJ/kg 28
26
Embodied Water, L/kg 87
54

Common Calculations

PREN (Pitting Resistance) 12
2.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18 to 21
29
Strength to Weight: Bending, points 18 to 20
25
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 14 to 17
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.15
0 to 0.2
Chromium (Cr), % 8.0 to 10
0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 87.1 to 90.8
91.9 to 100
Manganese (Mn), % 0.3 to 0.6
0 to 1.7
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.7
Nickel (Ni), % 0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.025
0 to 0.0050
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0 to 0.040
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15