MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. EN 2.4608 Nickel

ASTM A387 grade 9 steel belongs to the iron alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. They have a modest 29% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20 to 21
34
Fatigue Strength, MPa 160 to 240
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
81
Shear Strength, MPa 310 to 380
410
Tensile Strength: Ultimate (UTS), MPa 500 to 600
620
Tensile Strength: Yield (Proof), MPa 230 to 350
270

Thermal Properties

Latent Heat of Fusion, J/g 270
330
Maximum Temperature: Mechanical, °C 600
1000
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 26
11
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 10
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
55
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 2.1
8.4
Embodied Energy, MJ/kg 28
120
Embodied Water, L/kg 87
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 18 to 21
20
Strength to Weight: Bending, points 18 to 20
19
Thermal Diffusivity, mm2/s 6.9
2.9
Thermal Shock Resistance, points 14 to 17
16

Alloy Composition

Carbon (C), % 0 to 0.15
0.030 to 0.080
Chromium (Cr), % 8.0 to 10
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Iron (Fe), % 87.1 to 90.8
11.4 to 23.8
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
2.5 to 4.0
Nickel (Ni), % 0
44 to 47
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 1.0
0.7 to 1.5
Sulfur (S), % 0 to 0.025
0 to 0.015
Tungsten (W), % 0
2.5 to 4.0
Vanadium (V), % 0 to 0.040
0