MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. C10100 Copper

ASTM A387 grade 9 steel belongs to the iron alloys classification, while C10100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is C10100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20 to 21
1.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Shear Strength, MPa 310 to 380
150 to 240
Tensile Strength: Ultimate (UTS), MPa 500 to 600
220 to 410
Tensile Strength: Yield (Proof), MPa 230 to 350
69 to 400

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 26
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
100
Electrical Conductivity: Equal Weight (Specific), % IACS 10
100

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 2.1
2.6
Embodied Energy, MJ/kg 28
41
Embodied Water, L/kg 87
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
6.1 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
21 to 690
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18 to 21
6.8 to 13
Strength to Weight: Bending, points 18 to 20
9.0 to 14
Thermal Diffusivity, mm2/s 6.9
110
Thermal Shock Resistance, points 14 to 17
7.8 to 15

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0
99.99 to 100
Iron (Fe), % 87.1 to 90.8
0
Lead (Pb), % 0
0 to 0.0010
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Oxygen (O), % 0
0 to 0.00050
Phosphorus (P), % 0 to 0.025
0 to 0.00030
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.00010