MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. C65400 Bronze

ASTM A387 grade 9 steel belongs to the iron alloys classification, while C65400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is C65400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 21
2.6 to 47
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Shear Strength, MPa 310 to 380
350 to 530
Tensile Strength: Ultimate (UTS), MPa 500 to 600
500 to 1060
Tensile Strength: Yield (Proof), MPa 230 to 350
170 to 910

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1460
1020
Melting Onset (Solidus), °C 1410
960
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 26
36
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
31
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.1
2.8
Embodied Energy, MJ/kg 28
45
Embodied Water, L/kg 87
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
10 to 480
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
130 to 3640
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18 to 21
16 to 34
Strength to Weight: Bending, points 18 to 20
16 to 27
Thermal Diffusivity, mm2/s 6.9
10
Thermal Shock Resistance, points 14 to 17
18 to 39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0.010 to 0.12
Copper (Cu), % 0
93.8 to 96.1
Iron (Fe), % 87.1 to 90.8
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
2.7 to 3.4
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
1.2 to 1.9
Vanadium (V), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.2