MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. C92600 Bronze

ASTM A387 grade 9 steel belongs to the iron alloys classification, while C92600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is C92600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
70
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 21
30
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 500 to 600
300
Tensile Strength: Yield (Proof), MPa 230 to 350
140

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1460
980
Melting Onset (Solidus), °C 1410
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 26
67
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
34
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.1
3.6
Embodied Energy, MJ/kg 28
58
Embodied Water, L/kg 87
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
74
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
88
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18 to 21
9.6
Strength to Weight: Bending, points 18 to 20
11
Thermal Diffusivity, mm2/s 6.9
21
Thermal Shock Resistance, points 14 to 17
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0
86 to 88.5
Iron (Fe), % 87.1 to 90.8
0 to 0.2
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.7
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.050
Tin (Sn), % 0
9.3 to 10.5
Vanadium (V), % 0 to 0.040
0
Zinc (Zn), % 0
1.3 to 2.5
Residuals, % 0
0 to 0.7