MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. C97300 Nickel Silver

ASTM A387 grade 9 steel belongs to the iron alloys classification, while C97300 nickel silver belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is C97300 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 21
9.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 500 to 600
230
Tensile Strength: Yield (Proof), MPa 230 to 350
110

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Maximum Temperature: Mechanical, °C 600
150
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1410
1010
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 26
29
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
30
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.1
3.7
Embodied Energy, MJ/kg 28
59
Embodied Water, L/kg 87
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
18
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
59
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18 to 21
7.6
Strength to Weight: Bending, points 18 to 20
9.8
Thermal Diffusivity, mm2/s 6.9
9.3
Thermal Shock Resistance, points 14 to 17
8.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0
53 to 58
Iron (Fe), % 87.1 to 90.8
0 to 1.5
Lead (Pb), % 0
8.0 to 11
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
11 to 14
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.025
0 to 0.080
Tin (Sn), % 0
1.5 to 3.0
Vanadium (V), % 0 to 0.040
0
Zinc (Zn), % 0
17 to 25
Residuals, % 0
0 to 1.0