MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. R56401 Titanium

ASTM A387 grade 9 steel belongs to the iron alloys classification, while R56401 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is R56401 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 21
9.1
Fatigue Strength, MPa 160 to 240
480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
40
Shear Strength, MPa 310 to 380
560
Tensile Strength: Ultimate (UTS), MPa 500 to 600
940
Tensile Strength: Yield (Proof), MPa 230 to 350
850

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 600
340
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 26
7.1
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.1
38
Embodied Energy, MJ/kg 28
610
Embodied Water, L/kg 87
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
83
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
3440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 18 to 21
59
Strength to Weight: Bending, points 18 to 20
48
Thermal Diffusivity, mm2/s 6.9
2.9
Thermal Shock Resistance, points 14 to 17
67

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 8.0 to 10
0
Hydrogen (H), % 0
0 to 0.012
Iron (Fe), % 87.1 to 90.8
0 to 0.25
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
88.5 to 91
Vanadium (V), % 0 to 0.040
3.5 to 4.5