MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. AISI 301L Stainless Steel

Both ASTM A387 grade 91 class 2 and AISI 301L stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
22 to 50
Fatigue Strength, MPa 330
240 to 530
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 420
440 to 660
Tensile Strength: Ultimate (UTS), MPa 670
620 to 1040
Tensile Strength: Yield (Proof), MPa 470
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 600
890
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 37
39
Embodied Water, L/kg 88
130

Common Calculations

PREN (Pitting Resistance) 13
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 580
160 to 1580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
22 to 37
Strength to Weight: Bending, points 22
21 to 29
Thermal Diffusivity, mm2/s 6.9
4.1
Thermal Shock Resistance, points 19
14 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.030
Chromium (Cr), % 8.0 to 9.5
16 to 18
Iron (Fe), % 87.3 to 90.3
70.7 to 78
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
6.0 to 8.0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0