MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. EN AC-21200 Aluminum

ASTM A387 grade 91 class 2 belongs to the iron alloys classification, while EN AC-21200 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 20
3.9 to 6.2
Fatigue Strength, MPa 330
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 670
410 to 440
Tensile Strength: Yield (Proof), MPa 470
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 26
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
34
Electrical Conductivity: Equal Weight (Specific), % IACS 10
100

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
10
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.0
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 88
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 580
500 to 930
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 24
38 to 40
Strength to Weight: Bending, points 22
41 to 43
Thermal Diffusivity, mm2/s 6.9
49
Thermal Shock Resistance, points 19
18 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.020
93.3 to 95.7
Carbon (C), % 0.080 to 0.12
0
Chromium (Cr), % 8.0 to 9.5
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 87.3 to 90.3
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0.15 to 0.5
Manganese (Mn), % 0.3 to 0.6
0.2 to 0.5
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0 to 0.050
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.2 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.010
0 to 0.1
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.1