MakeItFrom.com
Menu (ESC)

ASTM A588 Steel vs. Grade 34 Titanium

ASTM A588 steel belongs to the iron alloys classification, while grade 34 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A588 steel and the bottom bar is grade 34 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
20
Fatigue Strength, MPa 270
310
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Shear Strength, MPa 350
320
Tensile Strength: Ultimate (UTS), MPa 550
510
Tensile Strength: Yield (Proof), MPa 390
450

Thermal Properties

Latent Heat of Fusion, J/g 250 to 260
420
Maximum Temperature: Mechanical, °C 410
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1410 to 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 43 to 44
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3 to 2.5
55
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.5 to 1.6
33
Embodied Energy, MJ/kg 20 to 22
530
Embodied Water, L/kg 50 to 51
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 400
960
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20
31
Strength to Weight: Bending, points 19
31
Thermal Diffusivity, mm2/s 12
8.4
Thermal Shock Resistance, points 16
39