MakeItFrom.com
Menu (ESC)

ASTM A588 Steel vs. N10003 Nickel

ASTM A588 steel belongs to the iron alloys classification, while N10003 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A588 steel and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 22
42
Fatigue Strength, MPa 270
260
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 73
80
Shear Strength, MPa 350
540
Tensile Strength: Ultimate (UTS), MPa 550
780
Tensile Strength: Yield (Proof), MPa 390
320

Thermal Properties

Latent Heat of Fusion, J/g 250 to 260
320
Maximum Temperature: Mechanical, °C 410
930
Melting Completion (Liquidus), °C 1460
1520
Melting Onset (Solidus), °C 1410 to 1420
1460
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 43 to 44
12
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3 to 2.5
70
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.5 to 1.6
13
Embodied Energy, MJ/kg 20 to 22
180
Embodied Water, L/kg 50 to 51
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
260
Resilience: Unit (Modulus of Resilience), kJ/m3 400
240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 12
3.1
Thermal Shock Resistance, points 16
21